• Ir al contenido principal
  • Ir a la barra lateral primaria
  • Ir al pie de página

Álgebra y Geometría Analítica

Contenidos de Álgebra para UTN-FRBA

  • Inicio
  • Parte 1
    • Vectores, recta y plano
      • Introducción a vectores en R3
      • Producto escalar en R3
      • Producto vectorial y mixto
      • Ecuaciones del plano
      • Ángulos y distancias
      • Haz de planos
      • Recta en ({mathbb{R}^3})
      • Recta y plano: intersecciones y ángulos
      • Distancias y proyecciones
    • Matrices y determinantes
      • Matrices
      • Determinante de una matriz
      • Matrices y sistemas de ecuaciones lineales
    • Espacios vectoriales
      • Espacios y subespacios vectoriales
      • Conjunto generador. LI y LD. Base. Dimensión.
      • Operaciones con subespacios
    • Sistemas de ecuaciones
      • Rango y sistemas de ecuaciones lineales
      • Relaciones entre soluciones de AX=B y AX=0. Variables libres.
  • Parte 2
    • Transformaciones lineales
      • Definición y propiedades de las transformaciones lineales
      • Núcleo e imagen. Clasificación de las transformaciones lineales.
      • Teorema fundamental de las transformaciones lineales
      • Matriz asociada a una transformación lineal
      • Composición e inversa de transformaciones lineales
      • Matriz de cambio de base
    • Autovalores y autovectores
      • Autovalores y autovectores: definiciones y propiedades
      • Multiplicidades algebraica y geométrica de un autovalor
      • Matrices semejantes
      • Diagonalización de una matriz
      • Diagonalización ortogonal de matrices simétricas
      • Diagonalización de una transformación lineal
    • Cónicas, parametrización y superficies cuádricas
      • Introducción a cónicas
      • Circunferencia
      • Parábola
      • Elipse
      • Hipérbola
      • Ecuaciones paramétricas de las cónicas (circunferencia, elipse, parábola e hipérbola)
    • Aplicaciones de la diagonalización
      • Potencias de una matriz diagonalizable
      • Rototraslación de cónicas
    • Números complejos
      • Definición y operaciones de números complejos en forma binómica
      • Operaciones en forma trigonométrica y exponencial
      • Radicación de números complejos
      • Regiones del plano complejo
  • Parciales
    • Parcial 1
      • 24-05-2015
      • 12-02-2016
      • 22-04-2017
      • 09-09-2017
      • 05-05-2018
    • Parcial 2
      • 21-06-2019
      • 10-11-2018
      • 23-06-2018
      • 04-11-2017
      • 10-06-2017
      • 13-06-2015
      • 31-10-2015
  • Finales
  • Empeza por aca

Última vez actualizado 19 mayo, 2017 por Isabel Pustilnik y Federico Gómez

Diagonalización ortogonal de matrices simétricas

Matriz ortogonal

¿Qué característica tiene una matriz ortogonal? Que la traspuesta de la matriz es igual a la inversa: \[P \in {\mathbb{R}^{n \times n}}{\rm{\;es\;ortogonal\;}} \Leftrightarrow {P^{ – 1}} = {P^T}\] Una matriz \(P \in {\mathbb{R}^{n \times n}}\) es ortogonal si y sólo si:

  • Sus columnas son ortogonales entre sí
  • El módulo (norma) de cada columna es 1

Otra forma de decirlo:

  • Las columnas deben ser versores ortogonales.

Consideremos el siguiente ejemplo: \[P = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}&{ – \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\end{array}} \right)\] Esta matriz es ortogonal. Verifiquen que efectivamente sus columnas son ortogonales y de módulo 1.

Otro ejemplo: \[Q = \left( {\begin{array}{*{20}{c}}{\frac{3}{5}}&{ – \frac{4}{5}}\\{\frac{4}{5}}&{\frac{3}{5}}\end{array}} \right)\] Esta matriz también es ortogonal. Verifíquenlo.

Ejemplo

Consideremos la matriz simétrica: \[A = \left( {\begin{array}{*{20}{c}}1&2\\2&4\end{array}} \right)\] Vamos a hacer una diagonalización ortogonal de esta matriz. Los autovalores son: \[\lambda = 0 \vee \lambda = 5\]

El autoespacio asociado a \(\lambda = 5\) queda: \[\left( {\begin{array}{*{20}{c}}{ – 4}&2\\2&0\end{array}} \right).\left( {\begin{array}{*{20}{c}}x\\y\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right) \Rightarrow {S_5} = gen\left\{ {\left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)} \right\}\] Y el autoespacio asociado a \(\lambda = 0\) queda: \[\left( {\begin{array}{*{20}{c}}1&2\\2&4\end{array}} \right).\left( {\begin{array}{*{20}{c}}x\\y\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right) \Rightarrow {S_0} = gen\left\{ {\left( {\begin{array}{*{20}{c}}{ – 2}\\1\end{array}} \right)} \right\}\] Comprobemos que son perpendiculares los autovectores obtenidos: \[\left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right).\left( {\begin{array}{*{20}{c}}{ – 2}\\1\end{array}} \right) = 1.\left( { – 2} \right) + 2.1 = 0\] No es casual que los autovectores que hemos obtenido sean perpendiculares:

En las matrices simétricas, los autovectores asociados a autovalores distintos son ortogonales.

Ya tenemos dos vectores perpendiculares. \[P = \left( {\begin{array}{*{20}{c}}1&{ – 2}\\2&1\end{array}} \right)\] Con esta matriz \(P\) puedo diagonalizar a la matriz \(A\): \[\;{P^{ – 1}}AP = D = \left( {\begin{array}{*{20}{c}}5&0\\0&0\end{array}} \right)\] Ésta es una diagonalización de A, similar a otros ejemplos previos. Pero precisamente por ser A simétrica, los autoespacios son rectas ortogonales. Por lo tanto, podríamos diagonalizar la matriz A mediante una Q ortogonal (columnas ortogonales y de módulo 1) ¿Cuál sería la matriz \(Q\)? Falta que los vectores columna sean versores. Para lograr esto hay que dividir cada autovector por su módulo. Tienen módulo igual a \(\sqrt 5 \): \[Q = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{ – \frac{2}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}\;}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\] Esta matriz es ortogonal: \({Q^T} = {Q^{ – 1}}\). Entonces la diagonalización ortogonal de la matriz \(A\) queda: \[{Q^{ – 1}}AQ = {Q^T}AQ = D = \left( {\begin{array}{*{20}{c}}5&0\\0&0\end{array}} \right)\]

Diagonalización ortogonal

Definición: Una matriz \(A \in {\mathbb{R}^{n \times n}}\) es diagonalizable ortogonalmente si y sólo si existe \(P\) ortogonal (\({P^{ – 1}} = {P^T}\)) tal que \({P^T}.A.P = D\).

Puede demostrarse que toda matriz simétrica es ortogonalmente diagonalizable. Pero además, las únicas matrices reales que pueden diagonalizarse ortogonalmente son las matrices simétricas. En resumen:

\(A\) es ortogonalmente diagonalizable si y sólo si \(A\) es simétrica

Archivado en:Sin categoría

Barra lateral primaria

Actualizaciones recientes

  • Segundo Parcial Resuelto de AGA [21-06-2019]
  • Segundo Parcial Resuelto de AGA [10-11-2018]
  • Segundo Parcial Resuelto de AGA [23-06-2018]
  • Primer Parcial Resuelto de AGA [05-05-2018]
  • Segundo Parcial Resuelto de AGA [04-11-2017]

Archivos

  • junio 2019
  • noviembre 2018
  • julio 2018
  • mayo 2018
  • noviembre 2017
  • septiembre 2017
  • junio 2017
  • abril 2017
  • diciembre 2016
  • noviembre 2016
  • octubre 2016
  • septiembre 2016
  • agosto 2016

Categorías

  • Aplicaciones de la diagonalización
  • Autovalores y autovectores
  • Cónicas, parametrización y superficies cuádricas
  • Espacios vectoriales
  • Matrices y determinantes
  • Números complejos
  • Parte 1
  • Parte 2
  • Primer parcial resuelto
  • Segundo parcial resuelto
  • Sin categoría
  • Sistemas de ecuaciones
  • Transformaciones lineales
  • Vectores, recta y plano.

Descarga de PDFs

  • PDF Unidad 1
  • PDF Unidad 1
  • PDF Unidad 2
  • PDF Unidad 2
  • PDF Unidad 3
  • PDF Unidad 3
  • PDF Unidad 4
  • PDF Unidad 4
  • PDF Unidad 5
  • PDF Unidad 5
  • PDF Unidad 6
  • PDF Unidad 6
  • PDF Unidad 7
  • PDF Unidad 7
  • PDF Unidad 8
  • PDF Unidad 8
  • PDF Unidad 9
  • PDF Unidad 9

Unidad 3

Espacios vectoriales

En las unidades anteriores vimos que el álgebra de vectores y el álgebra de matrices presentan similitudes. Pudimos observar que las propiedades de la suma (de vectores o de matrices) y del producto por un escalar son idénticas en ambos conjuntos.

En esta unidad, generalizaremos el concepto de vector a partir de estas propiedades en común que hemos señalado para vectores geométricos y matrices.

Las siguientes preguntas nos ayudarán a focalizar el eje de esta unidad:

¿En qué se parecen los vectores geométricos, las matrices y los polinomios? ¿Qué propiedades comunes pueden detectarse en estos objetos de diferente naturaleza y variadas aplicaciones?

De esto se trata nuestra tercera unidad, donde se desarrollan conceptos centrales del álgebra lineal: espacios vectoriales, base, dimensión y coordenadas, entre otros.

Empezar Unidad 3

Footer

Buscá en el sitio

Realizado en UTN FRBA

UDB Matemática – Ciencias Básicas – Secretaría Académica

Licencia Creative Commons

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución – No Comercial – Sin Obra Derivada 4.0 Internacional.

Los gifs

Los GIFs del material teórico

Archivos

  • junio 2019
  • noviembre 2018
  • julio 2018
  • mayo 2018
  • noviembre 2017
  • septiembre 2017
  • junio 2017
  • abril 2017
  • diciembre 2016
  • noviembre 2016
  • octubre 2016
  • septiembre 2016
  • agosto 2016

Descargas en PDF

  • PDF Unidad 1
  • PDF Unidad 1
  • PDF Unidad 2
  • PDF Unidad 2
  • PDF Unidad 3
  • PDF Unidad 3
  • PDF Unidad 4
  • PDF Unidad 4
  • PDF Unidad 5
  • PDF Unidad 5
  • PDF Unidad 6
  • PDF Unidad 6
  • PDF Unidad 7
  • PDF Unidad 7
  • PDF Unidad 8
  • PDF Unidad 8
  • PDF Unidad 9
  • PDF Unidad 9

Webs relacionadas

Proba Fácil con contenidos de probabilidad y estadística

  • Inicio
  • Parte 1
    • Vectores, recta y plano
      • Introducción a vectores en R3
      • Producto escalar en R3
      • Producto vectorial y mixto
      • Ecuaciones del plano
      • Ángulos y distancias
      • Haz de planos
      • Recta en ({mathbb{R}^3})
      • Recta y plano: intersecciones y ángulos
      • Distancias y proyecciones
    • Matrices y determinantes
      • Matrices
      • Determinante de una matriz
      • Matrices y sistemas de ecuaciones lineales
    • Espacios vectoriales
      • Espacios y subespacios vectoriales
      • Conjunto generador. LI y LD. Base. Dimensión.
      • Operaciones con subespacios
    • Sistemas de ecuaciones
      • Rango y sistemas de ecuaciones lineales
      • Relaciones entre soluciones de AX=B y AX=0. Variables libres.
  • Parte 2
    • Transformaciones lineales
      • Definición y propiedades de las transformaciones lineales
      • Núcleo e imagen. Clasificación de las transformaciones lineales.
      • Teorema fundamental de las transformaciones lineales
      • Matriz asociada a una transformación lineal
      • Composición e inversa de transformaciones lineales
      • Matriz de cambio de base
    • Autovalores y autovectores
      • Autovalores y autovectores: definiciones y propiedades
      • Multiplicidades algebraica y geométrica de un autovalor
      • Matrices semejantes
      • Diagonalización de una matriz
      • Diagonalización ortogonal de matrices simétricas
      • Diagonalización de una transformación lineal
    • Cónicas, parametrización y superficies cuádricas
      • Introducción a cónicas
      • Circunferencia
      • Parábola
      • Elipse
      • Hipérbola
      • Ecuaciones paramétricas de las cónicas (circunferencia, elipse, parábola e hipérbola)
    • Aplicaciones de la diagonalización
      • Potencias de una matriz diagonalizable
      • Rototraslación de cónicas
    • Números complejos
      • Definición y operaciones de números complejos en forma binómica
      • Operaciones en forma trigonométrica y exponencial
      • Radicación de números complejos
      • Regiones del plano complejo
  • Parciales
    • Parcial 1
      • 24-05-2015
      • 12-02-2016
      • 22-04-2017
      • 09-09-2017
      • 05-05-2018
    • Parcial 2
      • 21-06-2019
      • 10-11-2018
      • 23-06-2018
      • 04-11-2017
      • 10-06-2017
      • 13-06-2015
      • 31-10-2015
  • Finales
  • Empeza por aca

Desarrollado por SalvaCastro

  • Inicio
  • Parte 1
  • Parte 2
  • Parciales
  • Finales
  • Empeza por aca